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A constructive approach to logics of physical systems, according to which families 
of propositions about physical systems are not defined in an axiomatic way, but 
are built up in the course of experiments, is proposed. Several ways of joining 
Boolean algebras of propositions obtained in single experiments are studied. 
The proposed approach is applied to study families of propositions encountered 
in EPR-type experiments. Two examples of such experimental families of EPR 
propositions are studied and they are compared with two theoretical families of 
EPR propositions in the literature. 

"The prime source of scientific knowledge about the physical world is the 
experience gained by systematic observation of physical systems.'" 

J. M. Jauch (1968) 

1. I N T R O D U C T I O N  

In  the  ove rwhe lming  ma jo r i t y  of  pape r s  on the q u a n t u m  logic  a p p r o a c h ,  
all  m a t h e m a t i c a l  s t ruc tures  which  descr ibe  phys i ca l  systems are  once  and  
for  all  e s t ab l i shed  af ter  a d o p t i n g  a set o f  more  or  less phys ica l ly  p laus ib le  
ax ioms.  The  choice  o f  ax ioms  var ies  f rom one au tho r  to another ,  bu t  usua l ly  
it is not  h i d d e n  (see, e.g., Mackey ,  1963; P i ton ,  1976; Bel t ramet t i  and  
Cass ine l l i ,  1981) that  one  o f  the  aims is to ob ta in  s t ructures  which  mi r ro r  
those  e n c o u n t e r e d  in a l r e a d y  exis t ing theor ies :  an o r t h o m o d u l a r  la t t ice  o f  
c losed  subspaces  o f  a Hi lbe r t  space  in q u a n t u m  mechan ics  or  a Boo lean  
a lgeb ra  o f  subsets  o f  a p h a s e  space  in c lass ica l  mechanics .  Therefore ,  the  
choice  o f  ax ioms  is s t rong ly  b i a sed  by  the  a l r e a d y  exis t ing theor ies  and  a 
k ind  o f  a v ic ious  circle  results .  
tlnstytut Matematyki, Uniwersytet Gdafiski, 80-952 Gdafisk, Poland. 
2Departamento de Ffsica Moderna, Universidad de Cantabria, 39005 Santander, Spain. 

1041 
0020-7748/90/1000-1041506.00/0 �9 1990 Plenum Publishing Corporation 



1042 Pykacz and Santos 

In the present paper  we continue, with slight modifications, the line 
of  investigation originated in Posiewnik and Pykacz (1986). We analyze in 
quantum-logical  terms the process of  building a theory without any previous 
knowledge about  the system. This is done step by step by making experiments 
or observations and accumulating data. For this reason, contrary to what 
is usually encountered in the literature, nothing like the notion of the set 
of  all proposit ions appears  in our approach in the very beginning. New 
proposit ions are added to the set of  already existing ones if new experiments, 
testing new properties of  a system, are performed,  and this process may 
terminate or not. This explains the word "construct ive" in the title of  the 
paper.  

2. STAGE OF C O L L E C T I N G  EXPERIMENTAL DATA 
W I T H O U T  AN U N D E R L Y I N G  T H E O R Y  

Our starting point will be the concept of  an experiment. This consists 
of  a set of  well-defined manipulations (or observations) which allow one 
to give unambiguously the answer "yes"  or " n o "  to every sensible question. 
The word "quest ion"  is used here in its linguistic sense. For example: "Is  
the pointer o f  the instrument between numbers N and N + 1 on the reading 
scale?" or " Is  the brightness of  a just observed UFO greater than the 
brightness of  Sirius?" are both sensible questions. These examples should 
make it clear that the title of  the present section is not meant  as a requirement 
of  the absence of  any theory of our experimental  device. Nevertheless, such 
a theory may be, at this stage, irrelevant: we can measure the brightness of  
a UFO with the aid of  a photometer  and could have a perfect theory of  a 
photometer  without any theory of  the UFO. 

In order to obtain something more than a bare description of a unique 
phenomenon,  we have to assume that it is possible to repeat the experiment. 
To " repea t"  means that we do our best to be convinced that in every run 
of the experiment we deal with the same physical system possessing the 
same features. In the most general case, since we cannot exclude the situation 
that some experiments could alter irreversibly or even destroy the system, 
we admit  that particular runs of  the experiment can be performed on 
identical copies of  our system. This is in clear accordance with the everyday 
practice of  any experimentalist.  

According to the spirit of  the "Geneva  School" (Jauch, 1968; Jauch 
and Piton, 1969; Piton, 1976; Aerts, 1981, 1982), a class of  questions having 
the same answer (yes or no) in every run of  the experiment will be called 
a proposition. 

Let us assume that a finite number  n of  runs of  the chosen experiment 
is completed. By the very definition of a proposit ion we can identify each 
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proposi t ion tested by this experiment with the n-element sequence of O's 
and l 's:  

a = (a~), a i = O  or 1 ("no"  or "yes") ,  i = l , 2 , . . . , n  (1) 

To avoid a misunderstanding, we stress that only rarely does a real experi- 
ment concern just one proposition. Even one measurement  of  a single 
quantity usually determines many propositions at a time. For instance, the 
measurement  of  the length of a table in millimeters determines simul- 
taneously the truth value of the whole family of  propositions of  the form: 
"the length of  a table is between N and N +  1 millimeters." Nevertheless, 
since the dispersion of  results in a finite sequence of experimental runs is 
finite, the obtained family of  propositions is finite as well. The number  of  
proposit ions of  the form (1) obtained in n runs of  the experiment cannot 
obviously be bigger than 2 n, since we have assumed that at this stage we 
do not have any theory, so the only test of  whether two propositions are 
different consists in checking if they are represented by different sequences 
of  O's and l 's .  

The finite set A of  all propositions defined by (1) which are obtained 
in n runs of  the experiment e is a Boolean algebra with respect to pointwise 
partial order 

a -< b <=> a~ -< b~ for all i = 1, 2 , . . . ,  n (2) 

and or thocomplementat ion 

" a ~ a ' = ( 1 - a i )  (3) 

Meets and joins of  proposit ions with respect to pointwise partial order (2) 
can be calculated pointwisely as well: 

a ^ b = (ai ^ bi) = (min(a/, bi) ) = ( a i b i )  
(4) 

a v b = (a~ v b,) = (max(ai,  hi)) = (a,  + bi - aibi) 

According to (4), we have 

a ^ a ' =  (min(a~, 1 - ai)) = (0, 0 . . . . .  0) ~ A 
(5) 

a v a ' =  (max(a~, 1 - a ~ ) ) = ( l ,  1 , . . . ,  1 ) ~ A  

The elements appearing on the right-hand side of  (5) represent, respectively, 
a b s u r d  and tr ivial  proposit ions (Jauch, 1968; Piron, 1976) and they will be 
denoted O and I. They are, respectively, the least and the greatest elements 
of  the Boolean algebra A. 

We would like to indicate the analogy of our constructive approach 
with the theoretical approach  in M~tczyfiski (1973, 1974). M~tczyfiski repre- 
sented proposit ions by [0, 1J-valued functions defined on the set of  states. 
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Orthogonal propositions, i.e., proposit ions a, b such that a - - -b '  [denoted 
a _1_ b in M~czyfiski (1973, 1974)] are represented by functions f~ and fb 
such that f~ +fb - 1. In our finite case functions are replaced by sequences 
according to the formula 

a• for all i = l , 2 , . . . , n  (6) 

M~czyfiski proved as well that the join of  a sequence of pairwise 
orthogonal proposit ions coincides with the algebraic sum of functions. This 
also happens in our finite Boolean algebra A, since if {a~} = {(a~,i)} is a 
sequence of  pairwise orthogonal proposit ions and if a~,i = 1 for some i = 
1, 2 , . . . ,  n, then, necessarily, a~,~ = 0 for all/3 ~ a ;  therefore 

Va~=(~.a~,il if a~• f o r a ~ f i  (7) 
ot \ c e  / 

The analogy with M~czyfiski's functional representation suggests that 
states of  our system studied in n runs of  the experiment e should be labeled 
by natural numbers i -- 1, 2 , . . . ,  n. Of  course, it may happen that for some 
i ~ j ,  a~ = aj for all a ~ A. In such a case these two states are, at this stage 
of  investigation, indistinguishable, or alternatively, we admit that both i 
and j represent the same state. Let us note that after such a procedure of  
identification of  indistinguishable states, states correspond one to one to 
atoms of  the Boolean algebra A, i.e., to elements which are just above Q 
in our partial order (2). This is again in full agreement with the later papers 
of  the "Geneva  School," where pure states of  a physical system can be 
identified with atoms of  the lattice of  propositions. There is no contradiction 
between the possibility of  obtaining several different pure states identified 
with atoms of  A and the requirement that, to the best of  our knowledge, 
the system should possess the same features in every experimental run. The 
case when A has several atoms means that in the course of  our chosen 
experiment e the system was in a mixed state. Moreover,  our approach 
provides the possibility of  counting weights with which different pure states 
enter this mix tu re - - a  problem which is generally beyond the scope of  the 
axiomatic quantum logic approach.  Due to the following lemma, this can 
be simply done by counting the number  of  l ' s  in each atom. 

Lemma 1. I f  {a~} is the family of  all atoms of the Boolean algebra A, ,  
t hen  for each i =  1 , 2 , . . . ,  n there exists exactly one atom a ,  such that 

a a ,  i = 1.  

Proof. Every element of  a finite Boolean algebra is the join of  the atoms 
it dominates (see, e.g., Halmos,  1974). Since i dominates all elements in A, 
if  there existed i such that a,,~ = 0  for all atoms as,  then the ith element of  
i should be 0 instead of  1. On the other hand, the meet of  any two different 
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atoms is the least element, so if as,i = at~,i = 1, then as -= a~. Thus, the lemma 
follows. �9 

Since each atom a~ can be identified with the proposit ion "the system 
is in the pure state as ,"  the frequency of confirming this proposit ion in n 
runs of  the experiment e equals the frequency of finding 1 in the sequence 
a , ,  i.e., to the number  

p(a~)  = n - '  ~. a~,i (8) 

From Lemma 1 we infer that 

~ p ( a ~ )  = n -1 ~ .~  a~,i= n - i n  = 1 (9) 
ot  o~ i 

i.e., all weights in the decomposit ion into pure components  of the mixed 
state in which our system was in the course of  the experiment e sum up to 
1, as expected. As an example,  let us assume that in the course of  five runs 
of  the experiment  e, the Boolean algebra A = { Q =  (00000), a = (11100), 
b : ( 0 0 0 1 0 ) ,  c -- (00001), a v b = ( l l l l 0 ) ,  a v c = ( l l l 0 1 ) ,  b v c = ( 0 0 0 1 1 ) ,  
l = (11111)} was obtained. Elements a, b, and e are atoms of A and we infer 
that the physical system in the course of  the experiment e was in the mixed 
state p = 0.6a + 0.2b + 0.2c. 

The same procedure of  counting the fraction of l ' s  for each proposit ion 
a c A gives us a link with the other notion of a state often encountered in 
axiomatic quantum logics. According to many authors (see e.g., Mackey, 
1963; Jauch, 1968; Beltrametti and Cassinelli, 1981), a state of  a system is 
described by a probability measure defined on the or thocomplemented and 
or thocomplete  partially ordered set of propositions L, i.e., by a mapping 
p: L--> [0, 1] such that P (0  = 1 and p(V a s ) = ~ p ( a , )  for any sequence of 
pairwise orthogonal propositions. It is easy to see that in our case the 
function p: A ~  [0, 1] defined by the formula (8) for any proposit ion a c A, 
not only for atoms of A, is the probabili ty measure on A. The state of a 
physical system described by this probabili ty measure is of  course the 
previously mentioned mixed state of  a system. 

3. J O I N I N G  T O G E T H E R  BOOLEAN ALGEBRAS OBTAINED 
IN DIFFERENT EXPERIMENTS 

Throughout  the previous section we were dealing with the single finite 
Boolean algebra A obtained in n runs of  the same experiment e. This was 
also the case studied under  a slightly different aspect in Posiewnik and 
Pykacz (1986). Now we would like to go further and study the possibility 
of  joining together several finite Boolean algebras obtained in different 
experiments performed on the same physical system. Such a situation 
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happens,  for example,  when we measure (in different experiments) physical 
quantities which are not simultaneously measurable,  such as linear polariz- 
ation in different directions. 

Let us assume that we have a family of  finite Boolean algebras obtained 
by performing sequences of  different experiments on identical copies of  a 
physical system and then we join them together by identifying some elements 
which belong to different members  of  the family. The process of  iden- 
tification is a sign that a kind of primitive pretheory, at least in the form 
of  a set o f  vague intuitions, has started to emerge in our mind, provided 
we had no theory of  the studied phenomena  before. Of  course this is rarely 
the case nowadays.  More often a theory of even some theories are already 
at hand and the identification of proposit ions is made on this basis. In both 
cases the natural question about  the emerging structure of  the set of  proposi-  
tions arises. The structure of  the set of  experimentally obtained proposit ions 
can serve as a hint for building up a theory in the first case or as a test of  
compatibil i ty of  already existing theories with experiments in the second 
case. 

We shall study several kinds of  such joining, starting from the simplest 
one. In the following we assume that all Boolean algebras are obtained by 
performing different experiments. The case of  having more than one algebra 
obtained by several series of  runs of  the same experiment can be eliminated 
in the very beginning by collecting all data from all runs before we start to 
build the Boolean algebra of  propositions. Therefore, we begin the construc- 
tion having a finite family {Ak} of finite Boolean algebras, where each 
subscript k = 1, 2 , . . . ,  m represents a different experiment. 

The process of  joining Boolean algebras of  different experiments corre- 
sponds to the introduction of some degree of noncontextuality. In an 
extremely contextual theory it is assumed that the measured properties may 
depend on the full experimental  context and therefore propositions defined 
in different experiments are never identified. Contextual theories rest upon 
weakest assumptions,  but they also have the least structure. The introduction 
of  some degree of noncontextuality,  therefore, can be seen as a theoretical 
progress. 

We shall quote now, for the reader 's  convenience, several ways of  
joining together Boolean algebras studied in the mathematical  literature. 
Most of  the quoted results can be found in Kalmbach (1983). 

3.1. Horizontal Sum 

A horizontal sum of  a family of  Boolean algebras is obtained by 
identifying all the least and, respectively, all the greatest elements from all 
members  of  the family. This yields the structure L in which we can easily 
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distinguish a family of  maximal  Boolean subalgebras, usually called b locks  

such that A n B -- {Q, I} for any pair of different blocks of  L. Of  course in 
our case each block is a Boolean algebra of  propositions obtained in a 
single experiment.  The following simple lemma can be easily proved. 

L e m m a  2. A horizontal sum of a family of  Boolean algebras is an 
or thomodular  lattice. 

After forming a horizontal sum of experimental  Boolean algebras our 
description of  a physical system is still extremely contextual, since the only 
identified elements are the least and the greatest ones from every algebra, 
and represent nothing more than the absurd and the trivial propositions Q 
and i, which can be expressed, respectively, in the form: "the physical 
system does not exist" and "the physical system exists." 

3.2. Joining by Identification of Atoms 

Since any finite Boolean algebra is completely determined by its atoms, 
it is natural to study in the next step the possibilities yielded by identifying 
atoms from different experimental  Boolean algebras. This means that we 
identify some pure states recognized in different experiments. 

The simplest situation is encountered when two different Boolean 
algebras can have, besides • and i, at most one atom x and its orthocomple-  
ment x '  in common.  In such a situation the following Loop Lemma of 
Greechie (1971) is a useful tool to study whether the resulting structure is 
an or thomodular  poset, or thomodular  lattice, or neither of  these structures. 

L e m m a  3. (Loop Lemma).  Let B be a set of  Boolean algebras such 
that for any two different members  A, B of B either A n  B = { Q , I }  or 
A n B = {~,  I, x, x'}, where x is an atom in both A and B and x 'A = x ' =  x m. 

Let the partial order and or thocomplementat ion on the set L = U Ai, Ai c B, 
be induced by the elements of  B. Then (i) L is an orthomodular  poset if B 
does not contain a loop of order 3, and (ii) L is an or thomodular  lattice if 
B does not contain a loop of order 3 or 4, where by a loop of order n is 
meant a finite sequence (B0, B ~ , . . . ,  B,_~) of elements of  B such that 

Bi c~ Bi+~ consists of exactly four elements 

B~ c5 Bj = {Q, l} f o r j # i + l , i - 1  (10) 

BoA BI n Bz = {Q, I} for n = 3 

(the computat ion of the i , j  is modulo n). 

We shall utilize this lemma in the next section, in which structures of  
sets of  proposit ions appearing in EPR-type experiments are studied. 
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A more sophisticated technique is required when "neighboring" 
Boolean algebras can have more than one a tom-coa tom pair  in common.  
We again refer the reader interested in the details of  this technique, called 
pasting of  the Boolean algebras, to Kalmbach (1983). 

3.3. Joining by Identification of  Nonatoms 

In the situation in which identified elements are not necessarily atoms 
of  Boolean algebras, the following Bundle Lemma can be of some help. 

L e m m a  4. (Bundle Lemma).  Let B be a set of  Boolean algebras all of  
which have the same Q and I and such that for any two elements A, B ~ B 
the set-theoretic intersection of  A and B carries a subalgebra A n B of  both 
A and B. Let us define on L = U A, A ~ B, the relation -< as the union of 
all relations -----a, A ~  B, and let us define the or thocomplementat ion map 
by x ' =  x 'a if  x is in A. Then: (a) if --- is transitive, then (L, - ,  ') is an 
or thocomplemented  poset, (b) if  -< is transitive and any two elements x, y 
of  L have a join in L which coincides with their join in A if both belong 
to some A of  B, then (L, -<, ') is an or thomodular  lattice. 

A similar construction was studied by Finch (1969). His definition of  
a logical structure, written down with the aid of  notation used throughout  
this paper,  looks as follows. 

A logical structure is an indexed set L = {A~, 3~ ~ F} of Boolean algebras 
with the following properties: 

(i) Each Ar has the same least element •. 
(ii) I f  x, y ~ A~ n As, then x -<, y if  and only if x -<8 Y. 

(iii) I f  x <--~ y and y ---8 z, there is 3' in F such that x -<~ z. 
(iv) I f  x belongs to A ,  n As, then x '~ = x '~. 
(v) I f  x and y belong to A~ n As, then x v ~ y = x v~ y. 

(vi) Suppose that y - < ~ x  '~ for some x and y in A~; if x - < ~ z  and 
y -<v z, there is A~ which contains x, y, and z. 

Finch calls the set L = U {AT: 3' c F} the logic associated with the logical 
structure L and proves that L, endowed with operations induced by L, is 
an or thomodular  poset. 

The following theorem shows that families of  Boolean algebras which 
satisfy the assumptions of  the Bundle Lemma and logical structures of  
Finch are closely connected. 

Theorem 1. I f  a family B of  Boolean algebras satisfies the assumptions 
of  version (a) of  the Bundle Lemma,  then the set L of all subalgebras of  
L =  U A, A ~ B, satisfies conditions (i)-(v) of  the definition of a logical 
structure. If, moreover,  condition (b) of  the Bundle Lemma holds, then L 
is a logical structure and L is the logic associated with L. 
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Proof Let us assume first that for a family B of  Boolean algebras 
version (a) of  the Bundle Lemma holds. Let us form L = U A, A c B, with 
partial order and or thocomplementat ion defined as in the Bundle Lemma,  
and let us denote by L the set of  all Boolean subalgebras of L. Conditions 
(i) and (iv) of  the definition of a logical structure are obviously satisfied. 
Since the partial order relation in all subalgebras of  L is inherited from L, 
(ii) is satisfied as well. For the same reason, instead of x ~ y and y -<~ z, 
we can simply write x-< y and y <-z, where -< is the partial order in L, so 
by the transitivity of  <-, x-< z. Since the partial order -< in L is defined as 
the union of  all relations --<a, A ~ B, we infer that there is a Boolean algebra 
A in B, and therefore also in L, such that x, z ~ A and x ~A 2'~ i.e., (iii) 
holds. I f  x, y c A~ n Ate, then, since both A~ and A s are Boolean subalgebras 
of  L, there exist joins x v~ y and x v~ y and they both coincide with a join 
x v y of  x and y in L, i.e., (v) holds. 

Now, let us assume additionally that the condition (b) of  the Bundle 
Lemma holds, so L is an or thomodular  lattice. In such a case any pair of  
comparable  elements a -< b or a -> b of  L, as well as all pairs (a, b'), (a ' ,  b), 
and (a ' ,  b'), commute  (see, e.g., Beltrametti and Cassinelli, 1981) and since 
partial order in all A~ is inherited from L, all pairs (x, y), (x, z), and (y, z) 
encountered in (vi) commute.  Thus, the triple (x, y, z) generates a Boolean 
subalgebra A~ of  t 4 and since obviously A~ ~ L the proof  of  (vi) and of 
Theorem 1 is completed. �9 

In all the ways mentioned so far of joining together Boolean algebras 
(horizontal sums, pasting, utilization of the Loop Lemma or Bundle Lemma,  
logics associated with logical structures), any pair (a, b) of  comparable  
elements of  the emerging structure L = U A existed already as a comparable  
pair  in at least one of the Boolean algebras which formed L. In our 
constructive approach to quantum logics this means that propositions a 
and b were tested simultaneously in at least one single experiment. There- 
fore, only simultaneously testable pairs of  propositions could be compar-  
able, which generally is not the case in axiomatic quantum logics. However,  
let us note that if a, b o A ,  a --<A b, and c, d ~ B, c--<Bd, and if we join A 
with B by identifying elements b and c, then we have a --<a b = c --<B d, so 
it is very natural to expect that a-< d in the final structure L, despite the 
fact that a and d do not belong to the same Boolean algebra, i.e., were not 
tested in a single experiment. The described procedure is known as the 
transitive closure (see, e.g., Kalmbach,  1983) of  the union of relations --<a, 
A c B, and it will be used in the next section to form one set of  propositions 
from four Boolean algebras obtained in four EPR experiments. 

Let us note that the forming of the transitive closure of  the union of  
experimentally established relations can be used for testing if identified 
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elements from different Boolean algebras were chosen in a proper way. For 
example, if a - -A b and c-----Bd and we are sure that a ~ b and c ~  d, we 
cannot identify a with d and b with c, since this would yield a = b = c = d. 
Similarly, if a ~ Q and a --A b, c --<8 d, e --A a', the identification of  b with 
c, and d with e, would yield a -< a', which, for a ~ O should be impossible. 
Also, in the case a ~ b and C--<A a --A d, e--<A b --<Af, g-----Bh, k - < s m  we 
should not identify c with h, g with f, d with k, and e with m, since this 
would imply a = b. 

The above-mentioned examples show that the problem of  joining 
together Boolean algebras by identifying elements and forming the transitive 
closure of  the union of  order relations is, when formulated in general terms, 
subtle and worth further study. Fortunately, in the constructive approach 
which we advocate in this paper, one always deals with finite families of 
finite Boolean algebras, so the process of joining them together and checking 
properties of  the emerging structure can be computerized. In fact, there 
already exist computer programs designed for this purpose. For example, 
the user of  the program described in Chapter 5(20) of Kalmbach (1983) 
can decide which elements of the input Boolean algebras should be identified 
and then the program checks if assumptions of the Bundle Lemma are 
fulfilled. Actually, in testing the transitivity of  the partial order relation, its 
transitive closure is made, but a warning is printed out to the user indicating 
the elements for which there was no transitivity in the family of original 
relations. When the transitive closure is formed (or there is no need to do 
it), the program finds the join of every pair of  elements or informs the user 
of the pairs for which they do not exist. If joins of all pairs of elements are 
found, the emerging structure, by the Bundle Lemma, is an orthomodular  
lattice. 

Before closing this section, let us mention that some families of joined 
together Boolean algebras were regarded as appropriate models for physical 
theories also by Kochen and Specker (1965, 1967), who called them partial  
Boolean algebras, and also by Lock and Hardegree (1984). A Boolean  
mani fo ld  was defined by Lock and Hardegree as a family (Bi, i~ I)  of 
Boolean algebras which satisfies the following properties: 

(i) If Bi is contained in Bj, then B~ = Bj. 
(ii) If a, b c Bi c~ Bj, then a -<i b if and only if a -<j b. 

(iii) 1~=lj, Q ~ = ~ j  for all i, j c L  
(iv) If a c Bi c~ Bj, then a 'i = a ~i. 
(v) I f a ,  b~B~c~Bj, t h e n a ^ ~ b = a  ^jb and a v i b = a  vjb. 

Lock and Hardegree have shown that this notion generalizes both 
the notion of Kochen and Specker's partial Boolean algebra and of an 
orthomodular  partially ordered set. The study of similarities and differences 
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between Lock and Hardegree 's  Boolean manifolds and Finch's (1969) 
logical structures is left to the reader. 

4. LOGICS OF PROPOSITIONS OF EPR-TYPE EXPERIMENTS 

In this section we shall build in a constructive way partially ordered 
sets of  experimental proposit ions of  an EPR-type experiment (Einstein et 
al., 1935). It should be mentioned that within the quantum logic approach 
similar structures of  theoretical propositions were studied recently by Szab6 
(1988) and Bub (1989). We shall compare their results with ours at the end 
of  this section. 

By an EPR-type experiment we mean an experiment in which a source 
S emits particles always in pairs in such a way that, after some time, members 
of  each pair are spatially separated. Let us assume that particle 1 goes to 
the left, particle 2 to the right, and that on each side we can perform 
experiments testing one of  two propositions a or b. These propositions are 
assumed not to be simultaneously testable for each of  the particles separ- 
ately, i.e., we cannot test simultaneously al and bl or a2 and b2, where the 
subscript indicates on which particle the test is performed. Nevertheless, it 
is assumed that we can test simultaneously the following four pairs of  
propositions: (a t ,  a2), (a l ,  b2), (b~, a2), and (b~, b2). Of  course, this can be 
done only in four different experiments. 

The identification of propositions in EPR-type experiments rests upon 
the assumption of locality, that is, the hypothesis that a modification 
introduced in some region of  space cannot have any influence in another  
region spatially separated (in the sense of relativity theory) from the first 
one. Locality is noncontextuali ty for EPR-type experiments, i.e., the assump- 
tion that two measurements performed at spatially separate regions cannot 
influence each other. 

4.1. EPR Experiment with Random Source and Ideal Counters 

Let us assume now that testing of a and b is done with the aid of  ideal 
counters which fire or not, allowing one to attach the answer " y e s " =  1 or 
" n o "  = 0 to a and b, and that the source emits pairs of  particles at random. 
As we shall see, the second assumption imposes severe restrictions on the 
structure of  the set of  experimentally verifiable propositions. In fact, such 
a situation is generally not studied in axiomatic approaches to quantum 
logics, where, in the case of  a yes-no experiment, it is assumed that one 
collects data being sure that the experiment was actually performed, so 
both a positive and a negative result of  any test yields information about 
a physical system. Contrary to this, in the investigated situation we cannot 
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experimentally distinguish the case of having negative results for both x~ 
and x2, x = a or b (none of the counters fires), from the case that, during 
the time of  observation, a pair of  particles was not emitted. This second 
possibility means the nonexistence of a copy of our physical system in this 
particular run of the experiment; therefore, all cases when none of the 
counters fires are identified with obtaining a negative result in the test of a 
trivial proposition i = "the system exists." Therefore, we are bound to count 
only those runs of experiments in which at least one of the counters testing 
xl or x2 fires, since only they convey information that the system actually 
exists. The sequences of  O's and l 's  representing nontrivial propositions in 
any of  the four experiments testing pairs (xl ,  x2) might be, for instance, as 
in Table I. 

Note the absence of pairs (0, 0) in the first two rows of  Table I. Note 
also that, according to formula (3), sequences representing propositions x'l 
and x~ are obtained from sequences representing xl and x2 by replacing all 
O's by l 's  and vice versa. In fact, x'~ and x~ are tested by the same counters 
which test xt and x2. As we shall see in Example 2, if x't and x~ can be 
checked by independent counters, quite a different family of Boolean 
algebras emerges. 

There are only three different columns in Table I, for example, the first 
three. Actually, these columns, or even their entries for x~ and x2, define 
the whole Boolean algebra uniquely and this algebra is isomorphic to the 
Boolean algebra 2 3 (see Figure 1). 

The whole structure obtained by identification, respectively, of proposi- 
tions ai and bi, i =  1, 2, as well as their orthocomplements,  appearing in 
different Boolean algebras 2 3 is presented in Figure 2. 

It can be checked that all assumptions of the Loop Lemma are fulfilled 
and that the structure of  Figure 2 consists in fact of a single loop of the 
order 4. Thus, it is an orthomodular  poset, but it is not an orthomodular 

T a b l e  I.  Pos s ib l e  R e s u l t s  o f  E P R - T y p e  E x p e r i m e n t s  w i th  R a n d o m  S o u r c e  

R e s u l t  fo r  r u n s  1, 2 , . . .  

P r o p o s i t i o n  1 2 3 4 5 6 7 8 9 10 11 12 

x I 1 0 1 0 1 ;0  1 0 1 1 1 0 

x 2 0 1 1 1 1 1 1 1 0 0 1 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

x~l 0 1 0 1 0 1 0 1 0 0 0 1 ' ' -  

x~ 1 0 0 0 0 0 0 0 1 ! 0 0 ' ' "  

x 1 ̂  x~ 0 0 1 0 l 0 1 0 0 0 1 0 �9 �9 " 

x '  I v x~ 1 1 0 1 0 1 0 1 1 1 0 1 ' �9 �9 
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I=(l,l,l .... ) 

xi=(i,o,i .... ) x~vx~=(1,1,o .... ) x2=(o,i,1 .... ) 

x~'=(o,l,o .... ) x1^x2:(o,o,1 .... ) x~=(1,o,o .... ) 

~ = ( o , o , o  . . . .  ) 

Fig.  1 

J 

I 

a 2 b 1 

Fig. 2 
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lattice. The conclusion that the structure of  Figure 2 is not a lattice also 
can be obtained as well by noticing that a~ < - a~, b~ and b'2<<-al, b~, but 
since a~ and bj are not comparable ,  none of them is the join of  a~ and b~. 

4.2. EPR Experiment with Controllable Source 

Let us assume now that source S which emits pairs of  particles is 
controllable in the sense that we can actually state in the course of  every 
single observation whether a pair of  particles was emitted or not. This does 
not have to be done necessarily by forcing the source to emit pairs of  
particles only when we want it. It can be achieved, for example,  by testing 
actually not only proposit ions ai or hi, but also their complements  a'i or 
bl,  since in such a case only the response " n o "  for both a proposit ion and 
its complement  would imply that a particle was not emitted. Theoretically, 
the counter testing xl,  x = a, b, i = 1, 2, should detect the presence of  a 
particle in the whole space available to the particle and not occupied by 
the counter which measures xi. Of  course, again counters have to be "ideal ,"  
as well as all the rest of  the experimental device, which should be "ideal ,"  
too. The alternative way of  testing whether the act of  emission actually took 
place (and at the same time of testing actually xl) could be done by a 
negative-result measurement  as described by Namiki  (1986). In this case 
we should place another  counter Do (a nondestructive and ideal one) just 
after the source, so the anticoincidence of  firing of Do and of the counter 
which tests xi would yield the required information about x~. 

The sequences of  O's and l ' s  representing nontrivial proposit ions in 
any of  the four experiments testing pairs (xl,  x2) might be, in the present 
case, as in Table II. 

Therefore, the Boolean algebra of  experimental  propositions obtained 
for each experiment is now isomorphic to the Boolean algebra 2 4 , which is 
drawn in Figure 3. 

To obtain all four specific Boolean algebras encountered in this version 
of the EPR experiment,  it suffices to replace xl and x2, respectively, by 
pairs (a l ,  a2), (a~, b2), (bl ,  a 2 )  , and (b~, b2). We shall denote these four 
algebras A ( x ~ ,  x2),  x = a, b. Now let us form from these four algebras the 
united structure L by identifying elements bearing the same label. The 
structure L has 4 x 16 - 4 x 2 - 2 x 3 = 50 elements [we subtract four pairs of  
the form (x~, x2), three Q's ,  and three l's to avoid counting them more than 
once]. It can be easily seen that the bare union of  all already existing partial 
order relations is no t  transitive on L. For example,  

a 1 A a 2 "~ala2 a l  ~-alb2 a l  v b2 

but a~ ^ a 2 and a~ v b 2 are not comparable  yet. Therefore, it is necessary to 
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T a b l e  I I .  Pos s ib l e  R e s u l t s  o f  E P R - T y p e  E x p e r i m e n t s  w i t h  C o n t r o l l a b l e  S o u r c e  

R e s u l t  f o r  r u n s  1, 2, . . .  

P r o p o s i t i o n  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - �9 �9 

x I 1 1 0 0 

x 2 1 0 1 0 

x~ 0 0 1 1 

x~ 0 1 0 1 

X 1 A X 2 

X i A X~ 

Xtl A X 2 

x~ ^ xl  
X 1 V X 2 

X! V X~ 

X~ V X 2 

~ v x~ 
(x, v x 9  

1 0 0 1 1 0 1 0 1 0 0 " ' '  

0 1 0 0 1 1 0 1 0 0 1 " ' '  

0 1 1 0 0 1 0 1 0 1 1 " ' "  

1 0 1 1 0 0 1 0 1 1 0 " ' "  

1 0 0 0 
0 1 0 0 

0 0 1 0 

0 0 0 1 

1 1 1 0 
1 1 0 1 
1 0 1 1 
0 1 1 1 

A(X~VX9 0 1 1 0 

(X 1 A X2) 

v (x~ A X~) 1 0 0 1 

0 0 0 0 1 0 0 0 0 0 0 " "  

1 0 0 I 0 0 1 0 1 0 0 . ' .  

0 1 0 0 0 I 0 1 0 0 1 ' ' '  

0 0 I 0 0 0 0 0 0 I 0 . ' -  

t 1 0 1 1 1 1 1 1 0 1 ' ' "  

1 0 1 1 1 0 1 0 1 1 0 . '  

0 1 1 0 1 1 0 1 0 1 1 - .  

1 1 1 1 0 1 1 1 l 1 1 ' '  

1 1 0 1 0 1 1 1 1 0 1 ' '  

0 0 1 0 1 0 0 0 0 1 0 ' -  

I 

r 

Fig. 3 
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form the transitive closure of  the union of existing relations. It can be 
checked that no difficulties of  the type mentioned at the end of the previous 
section are met in the present construction. In fact, overlapping of neighbor- 
ing algebras is now as minimal as in the previous example: two neighboring 
algebras have, besides Q and 1, only one element and its or thocomplement  
in common.  However,  now this element is not an atom and the total number  
of  atoms in passing from the family of  Boolean algebras B to the unified 
structure L is not diminished. 

Finally, let us mention that, as in the previous example,  the obtained 
structure L is not a lattice. For example,  

bt A a2 <_ bt <- bl v b '2 >- b~ >- al ^ b~ <- al <- at v a2 >- a2 >- bt ^ a2 

so both bl ^ a2 and at A b~ are dominated by at v a 2 and bt v b~ [ ^ and v 
are meets and joins in Boolean algebras A ( x i ,  xs), not in a partially ordered 
set L]. However,  they are not comparable  and since in fact there are no 
other elements, besides Q~, dominated simultaneously by at v a2 and bt v b~, 
neither bt ^ a2 nor at A b~ is the meet of  at v a2 and bt v b~ in the whole 
partially ordered set L. Moreover,  L is not an or thomodular  and even not 
or thocomplete  partially ordered set, since, for example,  bl ^ a~ -< bt v b2 = 
(b't A b~)', so bt ^ a~ _L b't ^ b~, but their join does not exist in L. 

The fact that L is not a lattice does not mean that L cannot be recognized 
as a substructure of  the theoretical lattice of  closed subspaces or, 
equivalently, projectors on such subspaces, of  the tensor product  of  two 
two-dimensional  Hilbert spaces of  the EPR-type experiment. However,  the 
sublattice of  projectors generated by 16 atoms of the form 

P~,P~,  Px,(1-Px2), ( 1 - P x , ) e , ~ ,  (1 -p~ , ) (1 -P~2) ,  x = a , b  (11) 

has more elements than L. It can be checked, for example,  that elements 
of  such a sublattice which correspond to the elements at v a2 and bt v b~ 
ment ioned in the previous counterexample are, respectively, projectors 
Pa, + P-2 - P-, P~2 and 1 - Pb, + Pb, Pb~. Their meet in the sublattice of  projectors 
has to exist. However,  it does not correspond to any element in our experi- 
mental poset L. 

The 16-element Boolean algebra, consisting of projectors onto closed 
subspaces of  the tensor product  of  two two-dimensional Hilbert spaces of  
the EPR experiment and generated by four atoms of the form (11) for a 
fixed pair (xl ,  x2), was obtained by Bub (1989) in a purely theoretical way. 
It is of  course isomorphic to our Boolean algebra 24 consisting of proposi- 
tions of  the "one-four th"  of  the EPR experiment (Figure 3), since all finite 
Boolean algebras with the same number  of  elements are isomorphic (see, 
e.g., Haimos,  1974). Bub has not investigated the whole sublattice generated 
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by 16 projectors of  the form (11). According to our calculations such a 
sublattice should consist of 146 elements: • (projector onto empty sub- 
space), I (projector onto the whole space), 16 atoms of the form (11), 16 
coatoms which are orthocomplements of atoms (11), and 112 projectors 
onto two-dimensional subspaces which are joins of pairs of atoms 
(equivalently: meets of  pairs of coatoms) yielding different elements. To 
make the comparison of  number of elements complete, recall that the 
structure L of  experimentally obtainable propositions of an EPR-type 
experiment with controllable source has 50 elements, while the Boolean 
algebra generated by 16 different elements has 2 ~6 = 65,536 elements placed 
on 17 different levels in comparison to five levels of the structure L of EPR 
sublattice of the lattice of projectors (projectors onto 0, 1, 2, 3, and four- 
dimensional subspaces). 

As far as Szab6's (1988) results are concerned, we think that his 
20-element but five-level structure presented on Figure 1 of his paper, in 
view of our Examples 1 and 2, is too small to describe the whole set of 
(theoretical) EPR propositions encountered in the experiment with the 
controllable source and, on the other hand, it has too many levels to describe 
the set of  propositions of the EPR experiment with random source. 
Moreover,  although he calls the structure represented on his Figure 1 "the 
smallest non-Boolean model quantum lattice describing the EPR events," 
it can be easily checked that this nonsymmetric structure is only a partially 
ordered set, not a lattice. [Note the difference of this structure and another 
20-element symmetric structure which is presented on Figure 2 of the other 
paper of Szab6 (1987). The latter is a non-Boolean orthocomplemented 
lattice; however, Szab6 does not claim that it describes EPR events.] In 
fact, Szab6's (1988) structure, apart from the four elements (denoted on 
his drawing by letters E, g, h, and m), is our familiar Boolean algebra 2 4, 
which describes "one-four th"  of the full EPR-type experiment with control- 
lable source. 

Let us finish with the reflection that the situation studied in Example 
1 seems to be closer to real EPR-type experiments than that of Example 2, 
which in turn is more similar to theoretical structures obtained within the 
Hilbert space quantum formalism by Bub (1989). However, since the par- 
tially ordered set of Example 2 is not even orthocomplete, the usual quantum 
logic notion of a state defined to be a probability measure on the logic of 
propositions cannot be applied in this case. We suspect that the more general 
"empirical logic" approach of  Foulis and Randall (see Foulis and Randall, 
1972; Randall and Foulis, 1973; Kl~iy, 1988) in which states are not represen- 
ted by probability measures on partially ordered orthocomplete sets would 
be more suitable here. An empirical logic approach was already applied by 
Kl~iy (1988) to theoretical studies of the EPR case and its application to 
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the EPR case within the f ramework of the construct ive approach  will be 
the objective of  a for thcoming  paper.  
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